Wie chunkx Unternehmen dabei unterstützt, den EU AI Act erfolgreich umzusetzen

Mit dem EU AI Act wird die sichere und verantwortungsvolle Nutzung von Künstlicher Intelligenz (KI) gesetzlich geregelt. Ab dem 2. Februar 2025 gilt zudem die Nachweispflicht, dass Mitarbeitende über ausreichende KI-Kompetenzen verfügen. Unternehmen stehen unter Handlungsdruck – und genau hier setzt die hyperpersonalisierte Microlearning-Plattform chunkx an. Sie bietet eine effektive, skalierbare Lösung, um die Anforderungen der Verordnung zu erfüllen, Zeit und Kosten zu sparen und gleichzeitig die Wettbewerbsfähigkeit zu sichern.

Die Kernforderungen des EU AI Act

Der EU AI Act verlangt, dass Unternehmen sicherstellen, dass Mitarbeitende über technisches, ethisches, rechtliches und sicherheitsbezogenes Wissen im Umgang mit KI verfügen – abgestimmt auf die Risikoklasse der eingesetzten KI-Systeme. Ohne diesen Nachweis drohen Sanktionen von bis zu 35 Millionen Euro oder 7 % des weltweiten Jahresumsatzes.

So unterstützt chunkx euer Unternehmen

chunkx ermöglicht es Unternehmen, den Anforderungen des EU AI Acts effizient und flexibel nachzukommen. Unsere Plattform setzt dort an, wo traditionelle Lernmethoden oft scheitern: Wir kombinieren KI-geschriebene, hyperpersonalisierte Lerninhalte mit den spezifischen Bedürfnissen eurer Mitarbeitenden und eurem Unternehmenswissen.

1. Kompetenzanalyse für maximale Relevanz

chunkx analysiert die Kompetenzen jedes einzelnen Mitarbeitenden und erstellt darauf abgestimmte Lerninhalte – individuell und präzise. Egal ob Einsteiger:in, Datenanalyst:in oder Führungskraft – alle lernen gezielt, was sie benötigen, um KI sicher und effektiv zu nutzen.

Vorteil: Hyperpersonalisierte Mikrolerneinheiten sparen Zeit und maximieren den Wissenszuwachs.

2. Automatisierte Erstellung hochwertiger Inhalte

Unsere KI nutzt bestehende Ressourcen – wie den EU AI Act oder andere öffentlich zugängliche Informationen – und erstellt darauf basierend sofort einsatzbereite Inhalte. Unternehmen können so schnell und kostengünstig relevante Weiterbildungen bereitstellen.

Vorteil: Zeit- und Kostenersparnis durch automatisierte Inhaltsbereitstellung mit konsistenter Qualität.

3. Lernen im Arbeitsalltag integrieren

chunkx macht Lernen zum Teil des beruflichen Alltags: Unsere kurzen Lerneinheiten lassen sich direkt in bestehende Kommunikationskanäle wie Microsoft Teams, E-Mails oder Slack integrieren. Statt einer losgelösten Plattform setzen wir auf kontextbezogenes Lernen „on the job“.

Vorteil: Mitarbeitende wenden das Gelernte direkt an, was den Lerneffekt erhöht und den sicheren Umgang mit KI fördert.

4. Nachhaltiger Kompetenzaufbau

chunkx ist mehr als ein einmaliges Tool: Unsere Plattform unterstützt den langfristigen Aufbau einer Lernkultur. Kontinuierlich aktualisierte Inhalte sorgen dafür, dass eure Mitarbeitenden nicht nur gesetzeskonform geschult sind, sondern auch den Herausforderungen der Zukunft gewachsen bleiben.

Vorteil: Nachhaltigkeit und Zukunftssicherheit durch kontinuierliches Lernen.

Der EU AI Act: Risiken und Chancen

Der EU AI Act setzt klare Rahmenbedingungen für den Umgang mit KI und bietet gleichzeitig Chancen: Geschulte Mitarbeitende können Prozesse optimieren, Innovationen fördern und Vertrauen in KI-Technologien schaffen. chunkx sorgt dafür, dass euer Unternehmen nicht nur die Vorgaben erfüllt, sondern auch von ihnen profitiert.

Fazit: Compliance leicht gemacht mit chunkx

chunkx ist die perfekte Lösung, um den EU AI Act erfolgreich umzusetzen. Unsere hyperpersonalisierte Lernplattform vermittelt KI-Kompetenzen effizient und praxisnah – und steigert dabei gleichzeitig die Produktivität und Innovationskraft eures Unternehmens.

Kontaktiert uns jetzt und erfahrt, wie chunkx euer Unternehmen zukunftssicher macht.

Update Recommender System: Nie mehr Updates und spannende Artikel zu deinen Themen verpassen

Unser einzigartiges Recommender System hilft Lernenden, zu ihren Themen up-to-date zu bleiben und sich weiterzuentwickeln. Wir vergleichen die Lerner-Daten mit neuen Artikeln, Studien und Kursen, die wir auf hinterlegten Websites, firmeninternen Quellen oder optional ganz allgemein im Internet finden. Finde in diesem Artikel heraus, was wir unseren Kunden genau anbieten und wie das funktioniert.

Was sind Recommender Systems?

Ein Empfehlungssystem, auch Recommender System genannt, ist eine Softwarelösung, die Benutzern personalisierte Vorschläge oder Empfehlungen für Produkte, Dienstleistungen oder Inhalte macht. Es basiert auf den Vorlieben, dem Verhalten und den Interaktionen des Benutzers. Solche Systeme kommen häufig in Online-Shops, Streaming-Plattformen, sozialen Netzwerken, aber auch auf modernen Lernplattformen wie chunkx zum Einsatz. Auf Lernplattformen beschränken sie sich nur meistens darauf, den Lernenden neue Kurse von der jeweiligen Plattform oder von einer begrenzten Zahl an Partnern zu empfehlen. Wir finden, das geht besser!

Recommender Systems in chunkx

In chunkx verarbeiten wir nicht nur, welche Kurse ein Lerner macht, sondern können direkt die Inhalte der vielen einzelnen Lerneinheiten analysieren. Das erlaubt uns, inhaltliche Vergleiche zu machen. Lernst du z.B. viel zum Thema Diverse Leadership, können wir die Inhalte deiner Lerneinheiten sowie deine Lerndaten dazu nutzen, um sie mit Skills zu matchen und passende Empfehlungen zu generieren:

1) Passende Kurse in chunkx
Okay, das ist noch keine Überraschung, aber eine sehr wichtige Funktion für unsere Kunden, die unsere Micro-Learning-Plattform nutzen. 

2) Passende Kurse außerhalb von chunkx
Jetzt kommen wir der Innovation schon näher. Per KI und gut aufgesetzter Data Extraction können wir passende Kurse zum Weiterlernen für dich finden. Hierbei können auch Skills, Entwicklungsziele  und andere Parameter berücksichtigt werden. 

3) Artikel, Studien und Updates
chunkx unterstützt dich bereits intensiv beim Lerntransfer. Mit unserem Recommender System machen wir es dir aber auch leicht, von neuen Artikeln, Studien und allgemein von Updates zu deinen Themen zu profitieren. Bleiben wir beim Beispiel Diverse Leadership: Wenn du einen super Kurs mit anschließendem Lern-Abo in chunkx hast, möchtest du ja nicht bei diesem Stand der Inhalte stehenbleiben, sondern dich weiterentwickeln. Solange du das Abo zum Kanal behältst, werden wir deine Lerndaten und Skills automatisch mit neu gefunden Artikeln vergleichen und dir Bescheid sagen, sobald wir etwas passendes für dich finden! So unterstützen wir dich nicht nur beim Lerntransfer, sondern vor allem auch beim kontinuierlichen Weiterlernen. 

Quellen von Recommendations

Qualität ist eine Kernanforderung an unsere automatisch generierten  Recommendations. Der erste Schritt dahin ist es, die Quellen zu kontrollieren, aus denen neue Empfehlungen grundsätzlich generiert werden dürfen. Hier gibt es unterschiedliche Stufen:

  1. Selektierte Quellen
    Gemeinsam mit unseren Kunden legen wir fest, welche Quellen wir für sie regelmäßig crawlen sollen. Dadurch stellen wir sicher, dass nur vom Kunden gewünschte Quellen für neue Empfehlungen berücksichtigt werden. Crawlen bedeutet, dass ein Roboter sich die Website immer wieder anschaut und analysiert, was neues veröffentlicht wurde. Diese Inhalte werden vektorisiert, um sie leichter mit Lerndaten vergleichen zu können. 
  2. Firmeninterne Quellen
    Noch mehr Kontrolle haben Kunden natürlich über ihre internen Daten. Und auch die lassen sich für Recommendations nutzen: Ähnlich wie bei der Vorgehensweise oben, vektorisieren wir die internen Daten, z.B. die einer Produktdatenbank oder einer Knowledge Platform, und reagieren auf identifizierte Wissenslücken bei den Lernenden mit den perfekten Empfehlungen zu den internen Artikeln. 
  3. Das freie Internet
    Gerade bei Themen, die hochaktuell sind, wie z.B. Generative AI, und bei denen sich täglich etwas ändern kann, empfehlen wir Kunden, auf die Einschränkung der Quellen zu verzichten. Ohne diese Einschränkung können wir noch passendere Empfehlungen für Kurse, Artikel und Updates finden.

Validierung von Recommendations

Gerade bei innovativer Automatisierung ist es wichtig, die Validierung der Ergebnisse ordentlich aufzusetzen. Je nach Use-Case wird eine erste Validierung bereits über die Einschränkung und Auswahl der Quellen sichergestellt. Da unser Recommender System vor allem auf inhaltlicher Nähe zwischen Lerneinheiten und neuen Kursen bzw. Artikeln aufbaut, gibt es erstmal grundsätzlich eine sehr gut Chance der Passung. Alle Ergebnisse, die aus dieser Sicht gut genug sind, landen auf einer Shortlist. 

Die Shortlist lassen wir dann mit GPT-4 analysieren und nochmals mit der Ausgangssituation, sprich den Lernerdaten, vergleichen. Wir nutzen hierbei nur Services über Microsoft Azure, sodass wir sicherstellen können, dass keine der Daten von OpenAI außerhalb unseres konkreten Zwecks genutzt werden dürfen und alle Daten in Europa (konkret in Frankreich) verarbeitet werden. Nach der Verarbeitung bleiben ein paar wenige Top-Ergebnisse übrig.

Die Top-Ergebnisse werden vor Veröffentlichung nochmal menschlich geprüft, sodass wirklich nichts schiefgehen kann. Dies gilt für unsere asynchronen Empfehlungen, aber nicht für adhoc Empfehlungen, wenn ein Lerner z.B. jetzt sofort eine neue Kurs-Empfehlung möchte. 

Verknüpfung mit nächster Lerneinheit

Im Bild oben siehst du ein Beispiel einer Recommendation, die per E-Mail gesendet wurde. Was du darunter siehst: Jeder Kommunikationsanlass wird von chunkx genutzt, um den Lernenden die nächste Lerneinheit zu schicken. Dadurch unterstützen wir das kontinuierliche Weiterlernen und ermöglichen Lernen direkt im Flow-of-Work in den Kanälen, die Menschen eh bereits nutzen (aktuell unterstützen wir E-Mail und MS Teams). 

Wann startest du mit chunkx?

Mit chunkx haben wir die Lösung geschaffen, um eure einmaligen Lernaktivitäten in kontinuierliche Lernerfahrungen zu verwandeln, u.a. mit Hilfe unserer Recommender Systems. Sprich mit uns über eure Lernkultur und die Veränderungen in eurem Unternehmen und wie chunkx euch am besten unterstützen kann.